Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Geriatrics (Basel) ; 9(2)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38525739

RESUMO

This study examines the potential of AI-powered personal voice assistants (PVAs) in reducing loneliness and increasing social support among older adults. With the aging population rapidly expanding, innovative solutions are essential. Prior research has indicated the effectiveness of various interactive communication technologies (ICTs) in mitigating loneliness, but studies focusing on PVAs, particularly considering their modality (audio vs. video), are limited. This research aims to fill this gap by evaluating how voice assistants, in both audio and video formats, influence perceived loneliness and social support. This study examined the impact of voice assistant technology (VAT) interventions, both audio-based (A-VAT) and video-based (V-VAT), on perceived loneliness and social support among 34 older adults living alone. Over three months, participants engaged with Amazon Alexa™ PVA through daily routines for at least 30 min. Using a hybrid natural language processing framework, interactions were analyzed. The results showed reductions in loneliness (Z = -2.99, p < 0.01; pre-study loneliness mean = 1.85, SD = 0.61; post-study loneliness mean = 1.65, SD = 0.57), increases in social support post intervention (Z = -2.23, p < 0.05; pre-study social support mean = 5.44, SD = 1.05; post-study loneliness mean = 5.65, SD = 1.20), and a correlation between increased social support and loneliness reduction when the two conditions are combined (ρ = -0.39, p < 0.05). In addition, V-VAT was more effective than A-VAT in reducing loneliness (U = 85.50, p < 0.05) and increasing social support (U = 95, p < 0.05). However, no significant correlation between changes in perceived social support and changes in perceived loneliness was observed in either intervention condition (V-VAT condition: ρ = -0.24, p = 0.37; A-VAT condition: ρ = -0.46, p = 0.06). This study's findings could significantly contribute to developing targeted interventions for improving the well-being of aging adults, addressing a critical global issue.

2.
Environ Technol ; 44(23): 3614-3626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35442161

RESUMO

The deposition of solid phosphorus-based mineral particles is a common problem in urine diversion systems, which occurs in transport systems, particularly in horizontal pipelines. In this work, particle deposition behaviour in turbulent flow in a 3D horizontal pipe was simulated by using the Euler-Lagrange method. The effects of particle diameter, particle density, particle shape factor and fluid flow velocity on particle deposition behaviour were investigated. The results showed that the deposition rate increased by 9.92%,6.88% and 6.88% with increasing particle diameter (10-90 µm), particle density (1400 kg/m3-2300 kg/m3), and particle shape factor (0.2-1), respectively. For particles with larger diameters (>90 µm) or larger density (>2300 kg/m3), the deposition rate of these particles was almost reached 100%. It was found that gravitational sedimentation was the dominant deposition mechanism in low fluid flow velocity range (0.1-0.5 m/s). As fluid flow velocity increased (>0.5 m/s), turbulent fluctuation became the dominant factor that affected particle motion behaviour, whereas the effect of gravitational sedimentation on particle deposition behaviour declined significantly, and the increase in fluid flow velocity no longer significantly affects deposition rate. It was found that the deposition rate decreased by 29.13% as the fluid flow velocity was increased from 0.1 m/s to 0.5 m/s, while the corresponding deposition rate only decreased by 14.24% when the fluid flow velocity was increased from 0.5 m/s to 2 m/s. The optimal flow velocity was found to range between 0.75 and 1.25 m/s, which may mitigate the deposition of mineral solids in urine diversion systems.


Assuntos
Minerais , Fósforo , Tamanho da Partícula , Simulação por Computador
3.
Sci Total Environ ; 823: 153532, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101511

RESUMO

The deposition of phosphorus-based mineral solids in urine diversion systems has been one of the main challenges for the large-scale practical applications of urine source separation. Accurate rheological characterization of urine slurry is of high importance for its practical flow performance. The rheological data of urine slurry was obtained using a narrow gap rotating rheometer. Based on current pipe flow theories and the obtained rheological data of urine slurry, the transition velocity was determined. The impacts of solid concentration and temperature on the rheological behavior of urine slurry were investigated in this study. Urine slurry behaved as a Newtonian fluid at low solid concentration. By contrast, urine slurry changed from Newtonian to non-Newtonian fluid with the increase in solid concentration, demonstrating a shearing thinning behavior and yielding stress fluid. The impact of temperature on the apparent viscosity of the urine slurry was described using an Arrhenius-type function. Moreover, the impact of solid concentration and temperature on the transition velocity was quantified, which indicated that the non-Newtonian behavior of the urine slurry in the compression settling region has a significant impact on the pipe flow behavior, leading to the formation of a compressed layer on the bottom of the pipe. The targeting understanding of transition velocity is particularly useful for the practical design and optimization of urine piping system, especially on how to mitigate pipe blockages. Based on the evaluation of different piping systems, this work proposed several potential urine collection and transportation modes.


Assuntos
Meios de Transporte , Coleta de Urina , Minerais , Reologia , Viscosidade
4.
Ultrason Sonochem ; 47: 133-140, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29908602

RESUMO

This study investigated the inactivation efficiency of ZnO nanofluids against E. coli in sonophotocatalysis with the aeration of nitrogen, oxygen, argon and their mixtures. The results showed that inactivation efficiency was increased when aeration was combined with sonophotocatalysis. Addition of different types of gases could lead to the different inactivation efficiency. The inactivation efficiencies were shown in the following order: no aeration < nitrogen < argon < oxygen < Ar/O2(3:7) < Ar/O2(7:3) < Ar/O2(5:5). The production of hydroxyl radicals was explored to understand the inactivation mechanism. Compared with sonophotocatalysis without aeration, more hydroxyl radicals were produced in sonophotocatalysis with aeration, which could lead to changes of cellular substances. Furthermore, characterization of E. coli cells using Raman spectroscopy and FTIR illustrated that sonophotocalysis could affect the cellular substances containing carbohydrates, proteins and P containing molecules. Results suggested that the enhanced antimicrobial activity with aeration was originated from stronger cavitational activity, together with the formation of hydroxyl radicals. Compared to sonophotocatalysis without aeration, more dissolved oxygen was existed in sonophotocatalysis with aeration, which could enhance the formation of hydroxyl radicals.

5.
Ultrason Sonochem ; 34: 232-238, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27773240

RESUMO

The present study evaluated inactivation efficiency of a sonophotocatalytic process using ZnO nanofluids including ultrasonic parameters such as power density, frequency and time. The result showed that inactivation efficiency was increased by 20% when ultrasonic irradiation was combined with photocatalytic process in the presence of natural light. Comparison of inactivation efficiency in photocatalytic, ultrasonic and sonocatalytic processes using Escherichia coli as a model bacteria identified that inactivation efficiencies are shown in the following order: ultrasonic irradiation

Assuntos
Escherichia coli/fisiologia , Viabilidade Microbiana/efeitos dos fármacos , Nanoestruturas/química , Processos Fotoquímicos , Ondas Ultrassônicas , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Catálise , Permeabilidade da Membrana Celular/efeitos dos fármacos , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...